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Abstract  

Non-targeted screening (NTS) in mass spectrometry (MS) helps alleviate the shortcoming of 
targeted analysis such as missing the presence of concerning compounds that are not monitored 
and its lack of retrospective analysis to subsequently look for new contaminants. Most NTS 
workflows include high resolution tandem mass spectrometry (HRMS2) and structure annotation 
with libraries which are still limited. However, combinatorial fragmentation tools that simulate 
MS2 spectra are available to help close the gap of missing compounds in empirical libraries. Three 
NTS tools were combined and used to detect and identify unknown contaminants at ultra-trace 
levels in surface waters in real samples in this qualitative study. Two of them were based on 
combinatorial fragmentation databases, MetFrag and the Similar Partition Searching algorithm 
(SPS), and the third, the Global Natural Products Social Networking (GNPS), was an ensemble of 
empirical databases. The three NTS tools were applied to the analysis of real samples from a local 
river. A total of 253 contaminants were identified by combining all three tools: 209 were assigned 
a probable structure and 44 were confirmed using reference standards. The two major classes of 
contaminants observed were pharmaceuticals and consumer product additives. Among the 
confirmed compounds, octylphenol ethoxylates, denatonium, irbesartan and telmisartan are 
reported for the first time in surface waters in Canada. The workflow presented in this work uses 
three highly complementary NTS tools and it is a powerful approach to help identify and 
strategically select contaminants and their transformation products for subsequent targeted 
analysis and uncover new trends in surface water contamination. 
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1 Introduction 
 

Recent advances in mass spectrometry such as higher sensitivity [1], resolution, mass accuracy 
and computing (i.e., faster processors, increased memory, etc.) are making non-targeted screening 
(NTS) of trace organic contaminants more applicable to environmental applications [2-4]. Still, 
NTS entails a heavy multistep data analysis method from peak selection, to the prioritization, and 
the eventual identification of prioritized compounds [4]. Compared with targeted analysis, NTS 
remains inconclusive, or tentative, in its identification with no reference standards used and the 
identification confidence level of a given compound may vary [5]. There are several methods to 
improve the confidence in a molecular formula such as the determination of the spectral accuracy 
of precursor ions [6], the open-source tool SIRIUS [7] and other algorithms used by manufacturers 
of mass spectrometers [8]. Suspect screening of specific classes of contaminants can also help 
narrow down the scope of research by performing a pseudo-NTS. As an example,  analysis of 
illicit drugs has seen recent advances in regard with online shared depositories [9] and MS software 
[10]. However, such methods can be difficult for compounds at lower intensities as it is often the 
case in trace and ultra-trace analysis. Compounds may also be identified with MS2 data. A probable 
structure can be proposed by using an MS2 library spectrum match [5]. Modern high-resolution 
tandem mass spectrometers can automatically gather structural information using functions such 
as data-dependent acquisition (DDA) [11] and data-independent acquisition (DIA)[12]. There have 
been successful cases of application of both DDA[13, 14] and DIA[15] to environmental analysis. 

 

Once structural information for compounds of interest is obtained, library spectrum matching is a 
convenient and powerful tool for identification of unknowns but is severely limited by the low 
number of MS2 spectra in libraries. Unlike very comprehensive electron ionization-mass 
spectrometry libraries for gas chromatography-mass spectrometry like the NIST Standard 
Reference Database, most online high-resolution electrospray ionization-MS2 libraries for 
UHPLC-MS analysis such as mzCloud, MassBank, Metlin or Riken contain small numbers of MS2 
spectra (<200 000) representing, in most cases, a small number of molecules (<20 000) [16]. The 
general heterogenicity of spectral data due to the oftentimes ultra-trace level concentration of 
analytes and matrix effects is a major hindrance against the effective usage of these libraries [17]. 
Additionally, the small number of compounds in electrospray ionization-MS2, databases, 
represents only a small fraction of the total number of known chemical compounds. For example, 
the CAS Registry contains about 162 000 000 unique compounds as of July 2020 [18]. To date 
one of the most comprehensive freely available chemical compound databases is PubChem which 
contains over 103 000 000 compound entries [19]. 

 

A way to solve the problem of limited MS2 spectra databases is to integrate computational 
techniques into NTS methods. There are several computational approaches to assess the structure 
of known unknowns. Among them are rule-based fragmentation and combinatorial fragmentation. 
On the first approach, the spectrum is compared to simulated fragmentation spectra using a set of 
fragmentation rules that are applied to a proposed structure. Mass Frontier (HighChem, Slovakia) 
and Fragmenter (ACD/Labs, Canada) software packages use this approach. These rules predict 
hundreds of possible fragments but only a fraction is actually observed. Also of note is that bond 
cleavage rates are rarely considered which makes the relative abundance of product ions 
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unavailable or inaccurate at best [20]. The combinatorial approach is used to explain the peaks 
found in an observed spectrum. Peaks are matched to a substructure and candidates are ranked by 
annotation score [20].  Possible fragments at cleavable links of a candidate compound’s structure 
are enumerated and compared with peaks present in the MS2 spectrum. There are some drawbacks 
to the combinatorial approach such as the inability to account for structural rearrangements and a 
lower accuracy because some predicted fragments are highly unlikely which can lead to a higher 
false identification rate [20-22]. Among the multiple NTS tools available at the moment, there are 
three are of interest given the different on they way that they function and thus they are highly 
complementary: Similar Partition Searching (SPS), the Global Natural Products Social 
Networking (GNPS), and MetFrag. 

 

The Similar Partition Searching (SPS) algorithm, developed by Sweeney [21, 23] and used in the 
present study, is based on a combinatorial approach. The SPS database is a subset of about 240 
000 common compounds from the PubChem Compound database that have been divided into 
mathematical partitions of their molecular mass, i.e., as masses of complementary substructures 
that when put together contain all the atoms of a given molecule. The database was formed by 
systematic bond disconnection using only a few very basic fragmentation rules. The SPS software 
first compares the selected precursor ion in each MS2 spectrum to the corresponding MS1 spectrum 
to determine adduct ion assignment (e.g. [M+H]+, [M+Na]+, [2M+H]+). The accurate mass of the 
precursor ion is then adjusted, based on this adduct assignment, to calculate the accurate mass of 
the analyte molecule.  The SPS algorithm then compares the accurate-mass fragmentation data 
from the MS2 spectrum to the partitions of all compounds in the database that have molecular 
weights that are within 4 mDa of the analyte. Each partition is scored mainly by the number and 
intensity of the neutralized product ions matched by virtue of being within 4 mDa of masses in the 
partition.  There is also a small score adjustment for mass accuracy and the number of rings and 
double bonds that were disconnected in generating the partition. For many MS2 spectra, multiple 
partitions of an individual molecule will generate different scores; these scores are then combined 
into one final score. The SPS scoring does not use or consider the isotope ratio data or the number 
of synonyms in the Pubchem database for each compound. SPS has been recently applied to the 
identification of up to 200 contaminants in wastewater and surface water in the US [24]. 

 

To illustrate how SPS works, one of the eleven 3-substructure partitions of dicyclohexylurea is 
shown in Figure 1. There are 248 3-substructure partitions in the SPS database of eight compounds 
with an exact mass within 4 mDa of the calculated accurate mass of dicyclohexylurea from the 
spectrum in Figure 1. The SPS algorithm will check each of these 248 partitions (plus 56 2-
substructure partitions and 524 4-substructure partitions) against the MS2 fragmentation data and 
then generate a combined score for each compound. 
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Figure 1. Four ions are found in the MS2 spectrum of dicyclohexylurea on mzCloud. All four ions 
can be explained by substructures in the figure with the addition/subtraction of one or two 
hydrogen atoms. These complementary substructures were generated by systematically 
disconnecting the breakable bonds of dicyclohexylurea and then placing the masses of the 
complementary substructures in the SPS database with masses of over 240 000 other common 
compounds. Searching is then done by pattern matching. 

 

The Global Natural Products Social Networking (GNPS) (https://gnps.ucsd.edu/) is a freely 
available online platform that works twofold by performing empirical library search from a bundle 
of online databases, including MassBank, MoNA, the Human Metabolome Database [25]. It also 
creates networks from data-dependent acquisition (DDA) files by converting the selected precursor 
ions into multidimensional vectors where each product ion from the MS2 spectrum is a dimension. 
It then calculates the scalar product of each combination of vectors. When the scalar product 
between two vectors is closer to a value of one, the more similar they are and thus the more similar 
are their respective MS2 to each other. This is very useful to mark which compounds are 
structurally related like natural products of the same family or, in organic contaminants analysis, 
transformation products [26]. 

MetFrag, an in silico combinatorial fragmenter, initially released in 2010 [27],works by searching 
candidates for a given m/z from a compound database. The candidates’ molecular structures are 
then split into smaller units by bond dissociation [28]. These in silico generated fragments are then 
compared to the experimentally obtained MS2 spectra. Scoring is based on the number of matched 
exact mass product ions between the combinatorial and experimental spectrum, the intensity of the 
product ions and the bond dissociation energy of the matched fragments. Several databases are 
available for MetFrag like PubChem, ChemSpider and KEGG. MetFrag was updated in 2016 to 
include better identification by using parameters such as the number of PubChem data sources for 
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a candidate, the number of PubMed articles referencing it, its presence on lists of relevant 
candidates for the identification, the presence of a substructure and or specific elements in a 
candidate and information about the retention time [28]. MetFrag has been used in non-targeted 
screening previously, notably in the Rhine River in Basel, Switzerland [4].  

 

Still, despite the use of empirical and computational MS2 database searching, NTS remains a 
challenging exercise. Significant shortcomings like handling large sets of data and the 
identification of unreported transformation products prevent it from being routinely applied in 
monitoring programs yet [4].  

 

The objective of this paper was to use three complementary qualitative NTS tools (SPS, MetFrag 
and GNPS) to clearly identify organic contaminants at ultra-trace to trace levels in real samples of 
surface waters for qualitative non-targeted analysis purposes and highlight the use of in silico 
databases. These tools were used in conjunction for the analysis of samples from a local river 
collected near a municipal wastewater treatment plant. Reference standards were then used to 
confirm some of the matches made by the tools. 

 

2 Experimental section 
 

2.1 Reagents and standards 
 

Water, acetonitrile (ACN), methanol (MeOH) and 0.1% formic acid (FA) in ACN were all HPLC-
MS Optima grade and were obtained from Fisher Scientific (Waltham, MA, USA). Analytical 
standards for the confirmation of suspects in the case study were of high purity (in most cases ≥98 
%) and are shown in the Supporting Information, section SI-1.1.  

 

2.2 Sample collection and preparation of River samples 
 

River water samples (one amber high-density polyethylene bottle of 1000 mL per sampling point) 
were collected from the Yamaska River upstream and downstream the wastewater treatment plant 
of Granby (QC, Canada) on July 11, 2019 (Figure SI-1). Granby is a town in southern Quebec 
with around 60 000 inhabitants, and it has a strong industrial sector and some agricultural activity 
upstream [29].  Samples were conserved in an ice cooler until arrival to the laboratory and were 
immediately stored at -20 °C. Before extraction, samples were thawed at room temperature and 
buffered to pH 7 with phosphoric acid monobasic and phosphoric acid dibasic. Then samples were 
extracted by solid-phase extraction according to a previous published method [30]. Briefly, 
samples of 250 mL were concentrated on polymeric Strata-X solid-phase extraction cartridges 
(200 mg, 6 mL) from Phenomenex (USA) and then eluted with 2 × 3 mL of an ACN-MeOH 1:1 
(v/v) solution.  Eluates were evaporated under a nitrogen flow and reconstituted to 625 µL with 
MeOH to obtain a concentration factor of 400. While using MeOH as reconstitution solvent leads 
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to peak distortion for early eluting peaks, the effect was minor and the benefits of solubilizing a 
large range of compounds outweighed the peak distortion effects observed in the early stages of 
the separation (Figure SI-2 in the Supporting information). Three extraction replicates per sample 
were carried for each sample. This improved the number of identifications and accounted for 
potential extraction and instrumental variability. 

 

2.3 Instruments and methods 
 

A Thermo Scientific Vanquish Flex ultra-high performance liquid chromatography system was 
coupled to a Thermo Scientific Q-OrbitrapMS model Q Exactive Plus Orbitrap (San Jose, CA, 
USA) using a pneumatic assisted heated electrospray ion source. The liquid chromatographic 
column was a Waters Acquity UPLC HSS T3 (2.1 × 50 mm, 1.8 µm) and the mobile phase was 
composed of water with 0.1% (v/v) formic acid (solvent A) and MeOH-ACN (3:2, v/v) with 0.1% 
(v/v) formic acid (solvent B). The gradient elution program, according to volume percent of solvent 
B in the mobile phase, was the following: 0 min, 5%; 8 min, 18%; 22 min, 80%; 32 min, 100%; 
40 min, 100%; 40.01 min, 5%; 45 min, 5%. Total run time was 45 min. Mobile phase flow rate 
was 250 µL min-1 throughout the run and the injection volume was 2 µL.  

 

For mass spectrometry, ion source parameters were the following: polarity was positive, capillary 
temperature was 300 °C; sheath gas was 50; auxiliary gas was 20; spray voltage was 4000 V. A 
data dependent acquisition (DDA) experiment was used for detection. A DDA cycle entailed one 
MS1 survey scan (m/z 100-1000) acquired at 35 000 mass resolution (FWHM) and precursor ions 
meeting user defined criteria for monoisotopic precursor intensity (dynamic acquisition of MS2 
based Top 10 most intense ions with at least 2×105 intensity threshold). Precursor ions were 
isolated using the quadrupole (2 Da isolation width) and activated by higher-energy collision 
dissociation using stepped normalized energy (25, 35 and 45 units) and fragment ions were 
detected in the Orbitrap at 17 500 mass resolution (FWHM). Instrument calibration was performed 
prior to all analyses and mass accuracy was notably below 1 ppm using Thermo Pierce calibration 
solution and automated instrument protocol. The calibration mixture was composed of caffeine, n-
butylamine, the tetrapeptide MRFA, and Ultramark 1621, a mixture of flourinated phosphazenes, 
in an acetonitrile/methanol/acetic acid solution. 

 

 

2.4 Data conversion and processing 
 

For the Similar partition searching (SPS) workflow, MSConvertGUI from the ProteoWizard tool 
Suite [31] was used to convert data files from vendor format to universal formats which were then 
compressed and uploaded to an Amazon Web Service S3 folder for the SPS algorithm from 
MathSpec Inc. (USA) to process. After blank subtraction, the results were imported into a 
Microsoft Access database. Tentative matches were then evaluated based on the match score and 
the number of synonyms for that compound. The latter reflects the popularity of a chemical and it 
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is analogous to the number of different literature references for that compound. Using the number 
of references as filter has been found to be a useful in the identification of unknowns [32]. For 
more details, consult the Supporting Information (Section 1.4 and Figure SI-3). 

 

The Global Natural Products Social Networking (GNPS) was used to perform embedded empirical 
library searches. GNPS also generates networks of related MS2 spectra (molecular networks) 
which is a powerful and efficient way to visualize DDA data. Vendor files were converted with 
MSConvert into a readable format and uploaded to the GNPS server where the search and networks 
were conducted. Once the networking was performed, the network files were treated with 
Cytoscape software [33]. Information regarding the search and network parameters is given in a 
schematized workflow in the Supporting Information (Section SI-1.5 and Figure SI-4). 

For the MetFrag workflow, PatRoon, a package from the R programming language that functions 
as a common interface for different NTS tools currently available was used [34]. PatRoon has been 
used in NTS studies in the past [35]. Vendor files were first converted with MSConvert into the 
mzML format before the data treatment. Peak picking and feature selection were conducted by 
XCMS, background subtraction and sample metadata were done with PatRoon itself. Formulas 
were generated with GenForm and detection of adduct ions was performed with CAMERA.  
Computational MS2 database search was performed by MetFrag on CompTox Chemicals 
Dashboard from the US EPA using metadata files according to McEachran, Mansouri, Grulke, 
Schymanski, Ruttkies and Williams [36]. For more details on the parameters of the tools used, see 
the Supporting Information (section SI-1.6 and Figure SI-5).  

 

2.5 Quality control 
 

A composite field blank of LC-MS Optima grade water was collected in the two sampling points 
and it was stored and then extracted in the same way as the samples. The field blank as well as an 
additional MeOH instrumental blank were injected for background subtraction and to control for 
potential laboratory and instrument contamination. Details about how the background subtraction 
was applied with SPS are shown in section SI-1.4 and Figure SI-3; details about how the field and 
instrumental blanks were used to look for contaminants with GNPS are given in section SI-1.5 and 
Figure SI-4; details about how the background subtraction were applied with patRoon and MetFrag 
are given in section SI-1.6 and Figure SI-5. 

 

2.6 Levels of identification confidence 
 

Only matches with a level of confidence of probable structure (level 2) and confirmed structure 
(level 1), according to the scheme proposed by Schymanski, Jeon, Gulde, Fenner, Ruff, Singer and 
Hollender [5] are reported in this article. The probable structure level was attained using either 
library (MS2 database match) or diagnostic evidence (e.g., possible ionization by electrospray in 
the positive mode and environmental relevance of the annotated chemicals on suspect lists). The 
structure confirmation level was attained using reference standards. However, all probable 
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structure matches do not carry the same level of certainty and informed judgement based on the 
chemistry and environmental context of a potential match must be considered. For instance, 
parameters like consistency between the retention time and the structure are all considered to filter 
out “bogus” matches. The quality of the match is, of course, a major factor; it considers the number 
of matched exact m/z for each fragment as well as the number of unexplained m/z. Finally, if the 
match originates from an empirical (GNPS) or combinatory (MetFrag, SPS) library, it does not 
carry the same level of confidence; the former being more reliable. As such, annotations not made 
by GNPS were cross-checked with the online MS2 database mzCloud. Where a feature’s match 
given by either SPS and/or Metfrag was not made by GNPS, its MS2 spectrum was submitted to 
mzCloud.  

 

Additionally, spectral accuracy and formula ranking were determined using Mass Works software 
from Cerno Bioscience (Las Vegas, NV) according to a method published previously [6]. Briefly, 
molecular formulas were generated according to the following parameters: search mode was 
sCLIPS; allowed elements were C, H, N, O, P, F, S, Cl, Br, Na; mass tolerance was 5 ppm; charge 
was chosen depending on the ion’s deconvolution state, even electron state; double bond 
equivalent range was 0.5 to 25; interference rejection was 0.001. 

 

3 Results and discussion 
3.1 Non-targeted screening of river water samples collected near a wastewater treatment plant 
 

An example of a match with the “probable structure” level of confidence for the pharmaceutical 
compound metoprolol is shown in Table 1 for SPS and in Figure 2 for GNPS and MetFrag. In 
Table 1, the “EPA DashBd” link redirects to a monoisotopic mass search for the calculated 
molecular weight (MW) ± 0.04 Da on the EPA CompTox Chemistry Dashboard. The links in the 
PubChemLink column open the PubChem Compound Summary for the tentatively identified 
candidate. In this example, the first candidate (PubChem Link: 4171) is metoprolol, the second 
(PubChem Link: 441308) one is metoprolol tartrate and the third one (PubChem Link: 62937) is 
metoprolol succinate. The next four hits with the same score of 82 are other salts of metoprolol 
with different counterions. These salts were not detected by the instrument, but since metoprolol 
is a component, these hits refer to the same compound. This match carries a probable structure 
level of confidence since the main m/z from the experimental and combinatorial spectra match and 
metoprolol is on several lists of suspects in surface waters. The matches with lower scores are from 
other compounds.  
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Table 1. Example of a SPS match for a feature. 

 
 

In Figure 2a, the experimental spectrum acquired with the Q-OrbitrapMS is compared to the 
empirical database spectrum of metoprolol from GNPS. As it can be seen, the MS2 mass spectrum 
of the unknown compound found in the river sample matches well with the library spectrum of 
metoprolol. In both spectra the most abundant peak is the [M+H]+ ion (m/z 268) and characteristic 
product ions frequently used for MRM experiments such as m/z 98, m/z 116, m/z 133 and m/z 159 
can be clearly seen the spectrum [37-39].  In Figure 2b, the bottom part of the graph is 
automatically generated by a report-making script embedded in MetFrag. On the spectrum view, 
the color match shows which algorithm annotated the m/z of specific fragments. The bar graph 
indicates the match score for the different criteria. These scores are normalized and 1 is the highest 
score. This figure shows that Metfrag identified multiple product that can be explained by the 
metoprolol structure such as C15H24NO2

+ (m/z 250, loss of H2O) and C12H20NO3
+ (m/z 226, loss of 

isopropyl), among others. 

 

A total of 253 compounds were identified by the multi-tool method in both sampling points, the 
complete list is found in the Microsoft Excel file IdentifiedCompounds.xslx (Supporting 
Information). These compounds were classified in five generic classes (Figure 3a): consumer 
product additives and other synthetic compounds (116 compounds), pharmaceuticals (87), natural 
products (28), illicit drugs (14) and pesticides (8). Out of the 253 identified compounds, 209 were 
assigned a probable structure and 44 compounds were confirmed with reference standards (Table 
2). A more detailed account of the matched product ions can be found in Table SI-1. All identified 
compounds found by the combinatorial tools (SPS and/or Metfrag) were cross-checked with the 
online MS2 spectra library mzCloud. In the file IdentifiedCompounds.xlsx, matches are listed as 
“not on mzCloud” if the compound is not present in the online library. A score from mzCloud is 
given if the annotation is the same as the one given by SPS and/or MetFrag and it is the best match. 
As many as 45 compounds were confirmed by mzCloud while 82 were not present on mzCloud’s 
database. Most of those absent compounds were chemical congeners related to consumer product 
additives.  

Analyte RT MW Intensity Adduct 
EPA 

DashBd Score 
Num 
Syn 

PubChem 
Link Class 

267185 5.23 267.18 694693   H+     267.1844 82 151 4171 pharmaceutical 
267185 5.23 267.18 694693   H+     267.1844 82 93 441308 pharmaceutical 
267185 5.23 267.18 694693   H+     267.1844 82 60 62937 pharmaceutical 
267185 5.23 267.18 694693   H+     267.1844 82 43 5702086 pharmaceutical 
267185 5.23 267.18 694693   H+     267.1844 82 18 6440651 not classified 
267185 5.23 267.18 694693   H+     267.1844 82 10 6446646 not classified 
267185 5.23 267.18 694693   H+     267.1844 82 4 16219665 not classified 
267185 5.23 267.18 694693   H+     267.1844 79 16 162812 xenobiotc metab 
267185 5.23 267.18 694693   H+     267.1844 45 20 3151271 not classified 
267185 6.04 267.18 439562   H+     267.1842 43 16 162812 xenobiotc metab 

https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?&mass_adducts=0&inputs=267.1844&error_da=0.004&input_type=ms_ready_monoisotopic_mass
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=4171
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?&mass_adducts=0&inputs=267.1844&error_da=0.004&input_type=ms_ready_monoisotopic_mass
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=441308
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?&mass_adducts=0&inputs=267.1844&error_da=0.004&input_type=ms_ready_monoisotopic_mass
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=62937
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?&mass_adducts=0&inputs=267.1844&error_da=0.004&input_type=ms_ready_monoisotopic_mass
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5702086
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?&mass_adducts=0&inputs=267.1844&error_da=0.004&input_type=ms_ready_monoisotopic_mass
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=6440651
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?&mass_adducts=0&inputs=267.1844&error_da=0.004&input_type=ms_ready_monoisotopic_mass
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=6446646
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?&mass_adducts=0&inputs=267.1844&error_da=0.004&input_type=ms_ready_monoisotopic_mass
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=16219665
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?&mass_adducts=0&inputs=267.1844&error_da=0.004&input_type=ms_ready_monoisotopic_mass
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=162812
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?&mass_adducts=0&inputs=267.1844&error_da=0.004&input_type=ms_ready_monoisotopic_mass
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=3151271
https://comptox.epa.gov/dashboard/dsstoxdb/multiple_results?&mass_adducts=0&inputs=267.1842&error_da=0.004&input_type=ms_ready_monoisotopic_mass
http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=162812
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Additionally, the file IdentifiedCompounds.xlsx indicates in which sampling points the 
compounds were detected. All compounds that were detected upstream the wastewater treatment 
plant were also detected downstream while fewer compounds, especially pharmaceuticals, were 
detected upstream compared to downstream. This is expected since Granby is the first sizeable 
city in this branch of the river. The number of compounds of each category detected upstream the 
wastewater treatment plant is shown in Figure SI-6 (Supporting Information). 

 
Figure 2. Example of probable structure match for metoprolol a) from GNPS and b) from MetFrag. 
FragScore is the MetFrag score; metFusion score combines MetFrag score with MassBank when 
applicable i.e., when MassBank has an entry for the compound; pubMedReference is the number 
of times a compound is referenced in PubMed; formulaScore is a score based on the number of 
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explained molecular formulas in the spectrum; CPDATCount is from the CPDAT list (Chemical 
and Products Database) that categorize chemicals functions; TOXCASTActive is the list of 
compounds screened by the US EPA; dataSources is the number of synonyms a compound has in 
the CompTox database, pubChemDataSources refers to the number of synonyms in PubChem, 
EXPOCASTPredExpo is a US EPA exposition prediction program; ECOTOX is a US EPA curated 
database that gives ecotoxicology data; NORMANSUSDAT, MASSBANKEU, TOX21SL and 
TOXCAST are databases of contaminants of emerging concern. 

 
Figure 3. a: Generic classes of the compounds identified as probable or confirmed structures by 
the multi-tool method. b: Anatomical Therapeutic Chemical (ATC) classes of pharmaceutical 
compounds identified as probable or confirmed structures. All the identified chemicals are found 
in the “IdentifiedCompounds.xslx” file (Supporting Information). 
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In Table 2, the precursor ions of all confirmed compounds (except for azithromycin) mass 
accuracies < 2.5 mDa as well as their most intense product ion. Spectral accuracy, a measure of 
the similarity between experimental and theoretical isotopic patterns [6], is also reported to further 
confirm the experimental data. In most cases, spectral accuracy was higher than 90% and the 
molecular formula was ranked among the top five possible formulas. While low values of spectral 
accuracy and low formula rankings were observed (e.g., cetirizine, valsartan) this was due 
generally to co-eluting isobars that lowered the match between theoretical and calibrated isotopic 
patterns in Mass Works. Such effect was already observed, especially for compounds at low 
concentrations in environmental matrices [6]. Another factor that affects ranking according to 
spectral accuracy is that molecules with masses > 400 Da have a higher number of potential 
matches than molecules with lower masses. 

 

The number of pharmaceuticals among the identified compounds (Figure 3b) is extensive: 57 
parent compounds and 30 transformation products were detected. Among these, four anatomical 
therapeutic chemical classes had the highest number of compounds:  cardiovascular system (26 
parent compounds, 10 transformation products), nervous system (12 parent compounds, 13 
transformation products), antiinfectives (5 parent compounds, 2 transformation products) and 
alimentary tract and metabolism (6 parent compounds, 1 transformation product). While some of 
the confirmed compounds are frequently occurring pharmaceuticals such as carbamazepine and 
venlafaxine, others less commonly reported compounds in surface waters were also found. For 
example, to the authors’ knowledge the angiotensin II receptor antagonists irbesartan and 
telmisartan and one of telmisartan’s transformation products were detected for the first time in 
surface waters in Canada but were found widely in other parts of the world [40]. Telmisartan 
spectra from the reference standard, the river sample and its transformation product can be seen in 
Figure SI-7 (Supporting Information).  

 

Table 2. Compounds confirmed using reference standards.  

Confirmed structure 
Precursor 

(river 
sample) 

(m/z) 

Mass 
accuracy 

(mDa) 

Spectral 
accuracy* 

(%) 

Product ion 
(river sample) 

(m/z) 

Mass 
accuracy 

(mDa) 
Usage** 

Atenolol 267.1708 0.46 89.6 (1) 190.0867 0.34 Beta-blocker 
Atorvastatin 559.2628 1.91 92.0 (4) 440.2248 0.87 Statin 
Azithromycin 375.2635 4.78 94.2 (2) 591.4237 2.34 Antibiotic 
Benzoylecgonine 290.1398 1.16 92.0 (1) 168.1024 0.43 Opioid (M) 
Caffeine 195.0883 0.43 96.7 (1) 138.0667 2.28 Stimulant 
Carbamazepine 237.1028 1.19 86.8 (2) 194.0970 -0.51 Antiepileptic 
Cetirizine 389.1637 1.69 73.9 (15) 201.0472 -0.50 Antihistamine 
Citalopram 325.1721 0.70 93.7 (2) 109.0456 1.03 Antidepressant 
Cocaine 304.1555 0.88 83.7 (1) 182.1181 0.34 Opioid 
N,N-Diethyl-meta-toluamide 
(DEET) 192.1388 0.49 99.3 (1) 119.0498 0.82 Insect repellant 

Denatonium 325.2280 0.31 92.6 (1) 86.0974 0.18 Bittering agent 
O-Desmethylvenlafaxine 264.1966 0.37 97.8 (1) 246.1863 0.77 Antidepressant (M) 

Diltiazem 415.1695 -1.54 87.0 (2) 178.0326 -0.42 Calcium channel 
blocker 



15 
 

Diphenhydramine 256.1703 0.06 95.8 (1) 167.0860 -0.12 Antihistamine 
Fexofenadine 502.2967 3.39 94.7 (2) 466.2756 0.98 Antihistamine 

Irbesartan 429.2405 -1.16 83.3 (2) 207.0924 0.02 Angiotensin II 
receptor antagonist 

3,4-Methylenedioxy
methamphetamine (MDMA) 194.1181 0.79 77.3 (1) 109.9594 0.50 Amphetamine 

Methadone 310.2163 0.46 87.6 (1) 265.1595 1.37 Synthetic opiod 

Octaethylene glycol (PEG-8) 371.2280 0.40 97.3 (2) 133.0860 -0.10 Ethylene glycol 
oligomer 

Octylphenol ethoxylate-9 
(OPEO-9)† 625.3925 -1.20 96.1 (80) 347.1677 0.60 Nonionic Surfactant 

Oxazepam 287.0588 1.28 97.5 (2) 269.0470 1.25 
Tranquilizer, 
antidepressant and 
illicit drug 

Pentaethylene glycol (PEG-5) 239.1497 0.80 95.2 (1) 151.0964 0.10 Ethylene glycol 
oligomer 

Quetiapine 384.1763 2.05 76.0 (13) 253.0800 0.38 Antipsychotic 
Tris(2-butoxyethyl) phosphate 399.2506 0.67 96.3 (13) 299.1634 -0.48 Flame retardant 

Telmisartan 515.2459 0.64 95.3 (7) 276.13711371 -1.13 Angiotensin II 
receptor antagonist 

Temazepam 301.0749 1.59 88.5 (1) 228.0577 0.81 
Tranquilizer, 
antidepressant and 
illicit drug 

Valsartan 436.2356 0.35 79.8 (2) 235.0990 1.02 Angiotensin II 
receptor antagonist 

Venlafaxine 278.2133 0.59 94.5 (1) 260.2016 0.22 Antidepressant 
*Number in parentheses indicates the rank among possible formulas according to spectral 
accuracy. ** (M) indicates metabolite or transformation product. † Other OPEOs, from OPEO-1 
to OPEO-17 were also observed and confirmed in the samples.  

 

Among the pharmaceuticals used to treat cardiovascular system disorders, the antihypertensive 
diltiazem, is interesting since it showcases the use of the molecular networks as can be seen in 
Figure 4. Only diltiazem and desmethyldiltiazem were identified with the databases originally. 
However, the other transformation products were sharing a single network since their MS2 spectra 
were highly similar. From the information available in the network such as the m/z difference 
between each precursor ion and the structure of diltiazem, it was possible to deduce the structure 
of the other transformations products even though they were not initially annotated by the 
databases. As mentioned earlier, irbesartan and telmisartan were confirmed with standards. 
Additionally, a transformation product that could correspond to of hydroxy-telmisartan was also 
found in the samples. The high number of pharmaceuticals from the sartan family observed (8 in 
total) could be explained by high ionization efficiency. According to studies on the relationship of 
ionization efficiency in electrospray and molecular properties, three physico-chemical parameters 
appear to have a significant influence: molecular volume, pKa and log D [41, 42]. The sartans 
identified have all relatively high molecular volumes and, at the pH of the mobile phase, they are 
cationic (except valsartan) and have log D values that would favor their transfer from droplets to 
the gas phase. Since these compounds appear to extensively degrade into multiple transformation 
products, it could be interesting to monitor their fate and occurrence in Canadian WWTP effluents 
and surface waters.  
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The presence of several pharmaceuticals used to treat nervous system disorders such as oxazepam, 
temazepam, quetiapine and venlafaxine were confirmed in the samples with reference standards. 
For venlafaxine, four of its transformation products: O-desmethylvenlafacine (confirmed), N-
desmethylvenlafaxine, N-oxide venlafaxine and oxo-venlafaxine, were also observed in the 
samples. Carbamazepine (confirmed), its metabolite 10,11-dihydro-10,11-
dihydroxycarbamazepine, citalopram (confirmed) along its transformation product 
desmethylcitalopram were identified as well in the river extracts. Finally, several antiinfectives 
were identified including azithromycin (confirmed), cefprozil as well as oxopterin-
sulfamethoxazole, an algal metabolite of sulfamethoxazole [43, 44] and 4-desmethoxy-4-ethoxy 
trimethoprim, a metabolite of trimethoprim. 

 
Figure 4. Molecular network of the calcium channel blocker diltiazem (a) and its transformation 
products (b to f) with proposed structures to the left. Each detected precursor is a node linked in 
the network with precursors that have similar MS2 spectra. In the figure, a is diltiazem, b is 
desmethyldiltiazem, c is deacethyldiltiazem, d is didesmethyldeacethyldiltiazem, e is 
desmethyldeacethyldiltizaem and f didesmethyldiltiazem. 

 

Among the illicit drugs, cocaine, and its metabolites benzoylecgonine, tropine and tropinone along 
with other opioids such as dezocine and methadone were observed in the samples. Cocaine, 
benzoylecgonine and methadone were confirmed with reference standards. Several amphetamines 
were also identified like methamphetamine, 3,4-methylenedioxymethamphetamine (confirmed), 
mephedrone, norephedrine and lefetamine. These results are consistent with a previous study 
where cocaine, benzoylecgonine and methamphetamine were found in surface waters near the 
town of Granby [45]. 

 

As for the consumer product additives and synthetic compounds, more than half of them (65 
compounds) were congeners containing repeating ethylene oxide or propylene oxide units such as 
octylphenol ethoxylates (OPEOs), alcohol ethoxylates, polyethylene glycols (PEGs) and alkyl 
PEG ethers. OPEOs were notably absent in the mzCloud database but the GNPS molecular 
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networks proved to be particularly effective in their identification as these very similar congeners 
were linked in a network as shown in Figure SI-8 (Supporting Information). These compounds are 
used as non-ionic surfactants in multiple industries. However, OPEOs have shown estrogenic 
activity [46-48] and have been used to replace nonylphenol ethoxylates which were found in 
neighboring rivers previously [49]. In total, 18 congeners of the OPEO family (OPEO-1, with one 
ethoxylate monomer to OPEO-18) were tentatively identified then confirmed with reference 
standards as can be seen in the case of OPEO-9 in Table 2. For the other congeners’ confirmation, 
please see Figure SI-9 (Supporting Information). While this study is fully qualitative, signal 
intensity for OPEO-3 to OPEO-15 was saturated in samples preconcentrated by solid-phase 
extraction (SPE) with a factor of 400. This speaks of a potentially very concerning level of 
contamination. Following identification by the proposed screening investigation, quantitation of 
these compounds could be planned in future studies to assess the level of contamination in the 
river and further estimate the risk that OPEOs and the other concerning contaminants pose. 
Congeners such as the OPEOs however represent a very complex challenge in term of 
quantification as these compounds are not commercially available as pure individual reference 
standards but rather as a mixture of congeners of various polyethylene oxide chain lengths. 

Other consumer additives that were confirmed were the flame-retardant tris(2-butoxyethyl) 
phosphate and the bittering agent denatonium. The spectra match of denatonium can be seen in 
Figure SI-10 (Supporting Information). This compound has been detected in several WWTPs in 
Germany [50], but to the authors’ knowledge, this is the first time it is reported in Canadian surface 
waters.  Other industrial compounds were identified with a confidence level of 2 (probable 
structure) such as three members of the phthalate family (dibutylphthalate, dioctylphthalate, and 
diisodecylphthalate), the surfactant dimethyldioctadecylammonium, used in detergents, fabric 
softeners and flocculating agent in WWTPs and the multipurpose chemical 2-(2-(2-(2-
phenoxyethoxy) ethoxy)ethoxy)ethanol. 

 

The number of compounds identified as probable structures (212) and confirmed structures (44) 
with the three NTS tools compares well with recent a work using non-targeted methods and an 
empirical library where a number of 68 compounds were tentatively identified in a Mediterranean 
River basin [51]. The strength of the multi-tool method partly rests on the comprehensive size of 
the databases that counted over 240 000 compounds compared to 2000 compounds for the 
referenced article. A work where the in silico database SPS was used indeed showed a higher 
number of tentatively identified compounds with 200 compounds [24] which would suggest a 
higher rate of identification with larger databases. SPS, MetFrag and GNPS are complementary: 
MetFrag (with patRoon) offers peak picking, formula generation and access to custom databases 
and international suspects lists while being open source; SPS is simple to operate, and its data can 
be efficiently managed with Microsoft Access databases; GNPS gives access to empirical 
databases and generates molecular networks. The annotations made by the two combinatorial tools 
can in turn help gather more information on the GNPS networks can be useful to identify 
transformation products. 
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4 Conclusion  
 

The hybrid method presented in this paper showcased its efficiency for identifying new trends in 
contamination as was the case for denatonium and the hypertension medications irbesartan and 
telmisartan. It also showed its potency to uncover yet unknown transformation products. The 
complementarity of SPS, GNPS and MetFrag allowed for increased confidence in the tentative 
identification made by only one tool.  

 

Consumer product additives and other synthetic compounds required more treatment time since 
there is often less information about them on their PubChem page compared to pesticides and 
pharmaceuticals as was also the case with mzCloud where few of these compounds were present 
in the library. Additional research must be conducted to make sure it is a likely match. For that 
reason, databases need to provide data and metadata more readily accessible to address this issue 
in the future. While at this point extensive NTS analysis is still too time intensive for frequent 
monitoring, it remains crucial to detect new forms of contamination (OPEOs, alkyl PEG ethers) 
and identify pharmaceutical metabolites or transformation products, it shows invaluable ability to 
guide water quality programs to include new target compounds in monitoring programs, thus 
acting like an analytical compass for quantitative target-oriented approaches. Quantitation remains 
the end-goal as concentrations are needed to properly evaluate risk and the extent of contamination 
and it presents its own significant challenges. Following the identification step, the quantitation of 
the most concerning contaminants will be then tackled in a future study. Still, since no laboratory 
can afford to buy and keep every single reference standard likely to be present in environmental 
samples, and even less so their stable labeled isotopes as internal standards, NTS is set to become 
a cornerstone for the analysis of trace organic contaminants in surface waters and it will continue 
to improve its performance in the next years.  
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